
III-I Sem COMPUTER NETWORKS (MR15)

1

MALLA REDDY ENGINEERING COLLEGE
(AUTONOMOUS)

Maisammaguda, Dhulapally , Secunderabad-500 014
Department Of Computer Science and Engineering

COMPUTER NETWORKS (MR15)

III-I Sem COMPUTER NETWORKS (MR15)

2

List Of Experiments:
Part-A

1.Implement the data link layer framing methods:
a) Character count
b) Character stuffing
c) Bit stuffing and destuffing

2) Implement on a data set of characters the three CRC polynomials:CRC-12,CRC-16,and CRC-32.
3) Implement parity check using the followinf techniques:
a)single dimensional data
b) Multi dimensional data

4) Implement Even and Odd parity

5) Implementation of data link layers
a) Unrestricted simplex protocol
b) stop and wait protocol
c) Noisy channel

6. Implementation of sliding window protocols
a) one bit sliding window protocol
b) Go back N sliding window protocol
c) Selective repeat sliding window protocol

7)Implementation of Routing protocols
a) Dijkstras algorithm
b) Distance Vector routing protocol
c) link state routing protocols

8) Implement the congestion algorithms:
a) Token bucket algorithms
b) Leaky bucket algorithm

III-I Sem COMPUTER NETWORKS (MR15)

3

Expt
No

NAME OF THE EXPERITMENT Page No

PART A

1 Implement the data link layer framing methods:
 a) Character count 4

 b) Character stuffing 5

 c) Bit stuffing and destuffing 9

2
Implement on a data set of characters the three CRC polynomials:CRC-12,CRC-
16,and CRC-32.

15

3
Implement parity check using the followinf techniques:

 a)single dimensional data 18

 b) Multi dimensional data 20

4) Implement Even and Odd parity 22

5) Implementation of data link layers

 a) Unrestricted simplex protocol 24

 b) stop and wait protocol 26
 c) Noisy channel 31

6) Implementation of sliding window protocols

 a) one bit sliding window protocol 36
 b) Go back N sliding window protocol 37

 c) Selective repeat sliding window protocol 41

7) Implementation of Routing protocols

 a) Dijkstras algorithm 43

 b) Distance Vector routing protocol 45

 c) link state routing protocols 47

8) Implement the congestion algorithms:

 a) Token bucket algorithms 49

 b) Leaky bucket algorithm 51

III-I Sem COMPUTER NETWORKS (MR15)

4

1)
A) character count
AIM: To develop a c program to generate character count
Procedure :

Character-count integrity is a telecommunications term for the ability of a certain link to preserve the

number of characters in a message (per unit time, in the case of a user-to-user connection). Character-
count integrity is not the same as character integrity, which requires that the characters delivered be, in
fact, exactly the same as they were originated.
Code :
#include <stdio.h>

/* count characters and input using while */
main()
{
 long nc;

 nc = 0;
 while (getchar() != EOF)
 ++nc;
 printf("%ld\n", nc);
}

https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Character_(computing)
https://en.wikipedia.org/wiki/Message
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/User_(telecommunications)
https://en.wikipedia.org/wiki/Telecommunication_connection
https://en.wikipedia.org/w/index.php?title=Character_integrity&action=edit&redlink=1

III-I Sem COMPUTER NETWORKS (MR15)

5

B)CHARACTER STUFFING&DESTUFFING
Aim:
To implement the data link layer framing method character stuffing.
Problem Description:
 The character stuffing method gets around the problem of re synchronization after an error by
having each frame start and end with special bytes.
Character Stuffing / Byte Stuffing:
 Character stuffing or byte stuffing is which an escape byte (ESC) is stuffed character stream
before a flag byte in the data.
Character destuffing / Byte destuffing:
 Character destuffing (or) byte destuffing is the process in which the data link layer on the
receiving end removes escape byte (ESC) before the data are given to network layer.
Explanation:
 To provide service to network layer, data link layer must use the services provided to it by the
physical layer. The bit stream is not guaranteed to be error free.The number of bits received may be less
than,equal to,or more than the number of bits transmitted,and they may have different values. It is up
to the data link layer to detect and, If necessary, correct errors.
 The usal approach is for the data link layer to break the bit stream up into discrete frames and
compute the checksum for each frame. When a frame arrives at the destination ,the checksum is
recomputed. If the newly computed checksum is different from one contain in the frame, the data link
layer knows than an error has occurred and takes steps to deal with it.
 In this approach, the “flag byte” is appended at the starting and ending delimiter.
Frame Format:

FLAG Header Pay load field Trailer FLAG

III-I Sem COMPUTER NETWORKS (MR15)

6

 Frame delimited by flag bytes
Example:

CharacterStuffing:
#include<stdio.h>
int pl=0;
FILE *fp,*fp1;
main()
{
void stuff();
stuff();
return;
}
void stuff()
{
int H=0,count=0,i=0,c=0,p=0,t=0;
char f[20];
char ch,prev,a[500],se[6]={'s','t','x','d','l','e'},de[6]={'e','t','x','d','l','e'};
printf("enter payload");
scanf("%d",&pl);
printf("enter the file to be stuffed");
scnaf("%c",&f);
fp=fopen("c source.txt","r");
fp1=fopen(f1,"w");
L1:while(((fscanf(fp,"%c",&ch1!=EOF)&&(w!=pl))
{
if(ch=='d')
{
a[H]=ch;
count=count+1;

III-I Sem COMPUTER NETWORKS (MR15)

7

}
else if(ch=='l')
{
a[H]=ch;
count=count+1;
}
else if(ch=='e')
{
a[H]=ch;
count=count+1;
if(count==3)
{
a[H+1]='d';
a[H+2]='l';
a[H+3]='e';
count=0;
if(H!=pl-3)
{
H=H+3;
count=0;
p=0;
}
else
{
prev=ch;
p=1;
}
}
}
else
{
a[H]=ch;
count=0;
}
H++;
count=0;
if(feof(fp))
c=1;
else
fseek(fp,-1,1)
L2:for(i=0;i<6;i++)
fprintf(fp,"%c",se[i]);
for(i=0;i<H;i++)
fprintf(fp1,"%c",a[i]);
for(i=0;i<6;i++)
fprintf(fp,"%c",de[i]);
fprintf(fp,"/n");

III-I Sem COMPUTER NETWORKS (MR15)

8

H=0;
if(p==1)
{
goto L1;
}
if(c==0)
{
p=0;
goto L1;
}
if(p==1)
{
p=0;
goto L2;
}
fcloseall();
}
CharacterDestuffing:
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
FILE *fp,*fp1;
main()
{
void dstuff();
dstuff();
return;
}
void dstuff()
{
int i=0,count=0,j,n=0;
char ch,a[50];
size-t read;
fp=fopen("cstuff.txt","r");
fp1=fopen("out.txt","w");
while((fscanf(fp,"%c",&ch)!=EOF))
{
n++;
if(ch=='\n')
{
n=n-1;
n=n-12;
for(j=6;j<(6+n);j++)
{
fprintf(fp1,"%C",a[j]);
}

III-I Sem COMPUTER NETWORKS (MR15)

9

i=0;
n=0;
}
else
{
a[i]=ch;
i++;
}
}
fcloseall();
}

c)
Problem: Implementing the data link layer framing methods such as the character stuffing and
 Bit stuffing.
Aim: To implement the data link layer framing method bit stuffing.
Problem Description: A new technique allows data frames to contain arbitrary number of bits and
allows character codes with arbitrary number of bits per character.
Bit Stuffing: Bit stuffing is which an zero bit is stuffed after five consecutive ones in the input bit stream.
Bit destuffing: Bit destuffing is the process of removing the stuffed bit in the output stream.
Explanation:

 To provide service to network layer, the data link layer, must use the services provided
to it by the physical layer. The bit stream is not guaranteed to be error free. The number of bits received
may be less than, equal to, or more than data link layer to detect and, if necessary, correct errors.
 The usual approach is for the data link layer to break the bit stream up into discrete
frames and compute the checksum for each frame. When a frame arrives at the destination, the
checksum is re computed. If the newly computed checksum is different from one contained in the
frame, the data link layer knows than an error has occurred and takes steps to deal it.
 Each frame begins and ends with a special bit pattern, 01111110.When ever the
sender’s data link layer encounter five consecutive 1’s in the data, it automatically stuffs a 0 bit in to
outgoing bit stream. This bit stuffing is analogous to byte stuffing. When ever the receiver sees five
consecutive incoming ones, followed by a 0 bit, it automatically dyestuffs the 0 bit.

Example:
011011111111111111110010
0101111011111011111010010

 Stuffed bits
011011111111111111110010

The Original Data
The Data as they appear on the line
The data as they are stored in the receiver’s memory after destuffing.

Conclusion:

 Bit Stuffing

III-I Sem COMPUTER NETWORKS (MR15)

10

 With the bit stuffing, the boundary between two frames can be unambiguously
recognized by the bit pattern. Thus the receiver loses track of where it is, all it has to do is scan the input
for flag sequences, since they can only occur at frame boundaries and never within data.

#include<stdio.h>
char a[100],se[8]={'0','1','1','1','1','1','1','0'};
void stuff();
void tobinary();
FILE *fp1,*fp2;
main()
{
tobinary();
stuff();
return;
}
void tobinary()
{
int v[10],i=0,a;
char ch;
fp1=fopen("soruce.txt","r");
fp2=fopen("binary.txt","w");
while(fscanf(fp1,"c",&ch)!=EOF)
{
FOR(I=0;i<7;i++)
v[i]=0;
a=ch;
i=0;
while(a!=0)
{
v[i]=a%2;
a=a%2;
i++;
}
i=6;
while(i>0)
{
fprintf(fp2,"%d",v[i]);
i--;
}
}
fcloseall();
}
void stuff()
{
int pl,x=0,count=0,i=0,p=0,c=0;
char ch,prev;
printf("enter payload");

III-I Sem COMPUTER NETWORKS (MR15)

11

scanf("%d",&pl);
fp1=fopen("binary.txt","r");
fp2=fopen("deatination.txt","W");
l1:while((fscanf(fp1,"%c",&ch)!=EOF)&&(x!=pl))
{
if(ch=='0')
{
a[x]=ch;
count=0;
}
elseif(ch=='1')
{
if(count=='5')
{
a[x]=0;
if(x!=pl-1)
{
x=x+1;
a[x]=ch;
count=0;
p=0;
}
else
{
prev=ch;
p=1;
}
count=count+1;
}
else
{
a[x]=ch;
count=count+1;
}
}
x++;
}
count=0;
if(feof(fp1))
c=1;
else
fseek(fp1,-1,1);
L2:for(i=0;i<8;i++)
fprintf(fp2,"%c",se[i]);
for(i=0;i<x;i++)
fprintf(fp2,"%c",a[i]);
for(i=0;i<8;i++)

III-I Sem COMPUTER NETWORKS (MR15)

12

fprintf(fp2,"%c",se[i]);
fprintf(fp2,"\n");
x=0;
if(p==1)
{
if(prev==0)
{
a[x]=prev;
x++;
count=0;
}
elseif(prev==1)
{
a[x]=prev;
count=count+1;
x++;
}
}
if(c==0)
{
p=0;
goto L1;
}
if(p==1)
{
p=0;
goto L2;
}
fcloseall();
}
BitDestuffing:

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
FILE *fp,*fp1;
main()
{
void dstuff();
void bintochar();
dstuff();
bintochar();
return;
}
void dstuff()
{

III-I Sem COMPUTER NETWORKS (MR15)

13

int i=0,count=0,pl,n=30,j;
char ch,a[50];
ssize_+ read;
printf("enter pay load");
scanf("%d",&pl);
fp=fopen("destination.txt","r");
fp=fopen("output.txt","w');
while(fgets(a,n,fp)!='\0')
{
a[strlen[a]-9]='\0';
for(i=0;a[i]!='\0';i++)
a[i]=a[i+s]
for(j=0;j<strlen(a);j++)
{
if(a[j]=='0')
{if(coumt==5)
count=0;
]
else
{
fprintf(fp1,"%',a[j]);
count=0;
}
]
if(a[j]=='1')
{
count++;
fprintf(fp1,"%c",a[j]);
}
}
}
fclose();
}
void bintochar()
{
char ch;
int a[7],p=0,j=0,i=0,c=0,sum=0;
fp=fopen("output1.txt","r");
fp=fopen("output2.txt',"w');
l1;while((fscanf(fp,"%c",&ch)!=EOF)&&(i<7))
{
if(ch=='1')
a[i]=1;
elseif(ch=='0')
a[i]=0;
i++;
}

III-I Sem COMPUTER NETWORKS (MR15)

14

p=6;
while(j<7)
{
if(a[j]==1)
sum=sum+pow(2,p);
j++;
p--;
}
if(feof(fp))
c=1;
if(c==0)
{
fprintf(fp,"%c",sum);
fseek(fp,-1,1);
sum=0;
j=0;
i=0;
goto l1;
}
fcloseall();
}

III-I Sem COMPUTER NETWORKS (MR15)

15

2.CRC

Problem Description:

 Implement on data set of characters the there crc polynomials – crc12, crc16, crcccitt.

Aim:

 To implement on data set of characters the three crc polynomials - crc12, crc16, crcccitt.

Program Description:

 Error correcting codes are widely used on wireless links, which are notoriously noisy and error
prone when compared to copper wire or optical fiber. The polynomial code, also know as a crc (Cycle
Redundancy Check). Polynomial codes are based on treating bit strings as representations of polynomial
with coefficient of 0 and 1 only.

Explanation:

 A k-bit frame is regarded as the coefficient list for a polynomial with k-terms, ranging from xk-1 to
x0. Such a polynomial is said to be of degree k-1. The higher order bit is the coefficient of xk-1 .The next
bit is coefficient of xk-2 and so on.
Polynomial arithmetic is done modulo 2,according to the rules of algebraic field theory.

Example:

 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1
 + 1 1 0 0 1 0 1 0 + 1 1 0 0 1 1 0 1 - 1 0 1 0 0 1 1 0 - 1 0 1 0 1 1 1 1
 _______________ ____________ ____________ _____________
 0 1 0 1 0 0 0 1 1 1 1 1 1 1 10 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0
 ________________ _____________ ____________ _____________
When polynomial is employed, the sender and receiver must agree up on a generated polynomial,
g(x),in advance. Both high and low order bits of the generator must one. To compute the check sum for
some frame with m bits,corresponding to the polynomial m(x),the frame must be longer than the
generated polynomial.
PARITY TECHNIQUES
A parity check is the process that ensures accurate data transmission between nodes during
communication. A parity bit is appended to the original data bits to create an even or odd bit number;
the number of bits with value one. The source then transmits this data via a link, and bits are checked
and verified at the destination. Data is considered accurate if the number of bits (even or odd) matches
the number transmitted from the source.
 Parity Check
Parity checking, which was created to eliminate data communication errors, is a simple method of
network data verification and has an easy and understandable working mechanism.

As an example, if the original data is 1010001, there are three 1s. When even parity checking is used, a
parity bit with value 1 is added to the data’s left side to make the number of 1s even; transmitted data
becomes 11010001. However, if odd parity checking is used, then parity bit value is zero; 01010001.

III-I Sem COMPUTER NETWORKS (MR15)

16

If the original data contains an even number of 1s (1101001), then parity bit of value 1 is added to the
data’s left side to make the number of 1s odd, if odd parity checking is used and data transmitted
becomes 11101001. In case data is transmitted incorrectly, the parity bit value becomes incorrect; thus,
indicating error has occurred during transmission.
Source code:
#include<stdio.h>
#include<string.h>
void crc();
char s[50],r[50]="";
int i,j,k,n;
main()
{
char ch;
do
{
int a=12,b=16,c=22;
printf("\t\t\t\t\n*****CRC*****\N");
printf("1.CRC12 \n 2.CRC16 \n 3.CRC CCITT\n Enter your choice:");
scnaf("%d",&n);
switch(n)
{
case 1:CRC(a);
 break;
case 2:CRC(b);
 break;
case 3:CRC(c);
 break;
default:printf("Enter correct choice \n");
break;
}
printf("\n do you want to continue:");
fflush(stdin);
scanf("%c",&ch);
}
while(ch=='y'||ch=='y');
}
void crc(int x)
{
char g[20],c;
FILE *fp,*fp1;
char fname[25],fname1[25];
printf("\n Enter file:");
scanf("%s",fname);
fp=fopen(fname,"w");
if(x==12)
strcpy(g,"1100000001111");
if(x==16)

III-I Sem COMPUTER NETWORKS (MR15)

17

strcpy(g,"11000000000000101");
if(x==12)
printf("\t\t \n YOU HAVE ENTERED CRC 12");
if(x==16)
printf("\t\t \n YOU HAVE ENTERED CRC 16");
if(x==22)
printf("\t\t \n YOU HAVE ENTERED CRC CCITT");
puts("\n Enter the message");
scanf("%s",s);
printf("\n entered string is: %s",s);
for(i=0;i<strlen(g)-1;i++)
strcat(s,"0");
printf("\n string after appending zero s:%S \n",s);
for(i=0;s[i]!='\0';)
{
p=strlen(r);
while((strlen(g)!=strlen(r)&&(s[i]!='\0'))
{
r[j++}==s[i++];
r[j]='\0';
}
for(j=0;strlen[g]==strlen9r00&&g[j]!='\0';j++)
{
if(g[j]==r[j])
r[j]='0';
else
r[j]='1';
}
while(r[0]=='0'&&r[0]!='\0')
{
for(j=0;r[j]!='\0';j++)
r[j]=r[j+1];
}
}
s[strlen(s)-strlen(r)]='\0';
strcat(s,r);
printf("\n string converted is :%s and stored at %s\n',s,frame);
fprintf(fp,"%s",s);
fcloseall();
printf("\n do you want to check?:");
scanf("%c",&c);
if(c=='y'||c=='y')
{
printf("\nb enter file:");
scanf("%s',frame);
fp1=fopen(frame,"r");
fgets(s,100,fp1);

III-I Sem COMPUTER NETWORKS (MR15)

18

strcpy(r,"\0");
for(i=0;s[i]!='0';i++)
{
j=strlen(r);
while((strlen(g)!=strlen(r)&&(s[i]!='\o'))
{
r[j++]=s[i++];
r[j]='\0';
}
for(j=0;(strlen(g)==strlen(r)&&g[i]!='\0';j++)
{

if(g[j]==r[j])
r[j]='\0';
else
r[j]='1';
}
while(r[0]='0'&& r[0]!='\0')
{
for(j=0;r[j]!='\0';i++)
r[j]=r[j+1];
}
}
s[strlen(s)-strlen(g)+1]='\0';
strcat(s,r);
fcloseall();
printf("\n transmitted string is: %s \n",s);
if(strlen(r)==0)
{
printf("\n success");
}
else
printf("\n data corrupted");
}
else
exit(0);
}
3) Implement parity check techniques
a) Single dimensional
#include<stdio.h>
#include<string.h>
void main()
{ int i;
 char name[200];
 int one=0,zero=0;
 int count=0;
 int no;

III-I Sem COMPUTER NETWORKS (MR15)

19

 printf("Enter The Name:-");
 gets(name);
 printf("Enter The Parity:-");
 scanf("%d",&no);
 for(i=0;name[i]!='\0';i++)
 {
 if(name[i]=='1')
 {
 one++;
 }
 else
 {
 zero++;
 }
 count++;
 }
 printf("\nZero Are:-%d",zero);
 printf("\nOne Are:-%d",one);
 if(no==0)
 {
 if(one%2==0)
 {
 printf("\nEven Parity");
 printf("\n0");
 puts(name);
 }
 else
 {
 printf("\nEven Parity");
 printf("\n1");
 puts(name);
 }
 }
 else

 {
 if(one%2==0)
 {
 printf("\nOdd Parity");
 printf("\n1");
 puts(name);
 }
 else
 {
 printf("\nOdd Parity");
 printf("\n0");
 puts(name);

III-I Sem COMPUTER NETWORKS (MR15)

20

 }
 }
}

3B) AIM: C code to implement multi dimensional parity check
#include<iostream>
#include<stdlib.h>
using namespace std;
#define maxlength 10
#define maxmessages 10
void initialize(int arr[][10],int m,int n)
{
for(int i =0;i<m;i++)
for(int j=0;j<n;j++)
{
arr[i][j] = rand()%2;
}
}
void print(int arr[][10],int m,int n)
{
for(int i =0;i<m;i++)
{ for(int j=0;j<n;j++)
{
cout<<arr[i][j]<<” “;
}
cout<<endl;
}
}
void addparbit(int arr[][10],int m,int n) // Even Parity
{
for(int i=0;i<m;i++)
{
int count = 0;
for(int j=0;j<n;j++)
{
if(arr[i][j] == 1)
count++;
}
if(count%2 == 0)
arr[i][n] = 0;
else
arr[i][n] = 1;
}
}
void induceerror(int arr[][10],int m,int n)
{
int k1,k2;

III-I Sem COMPUTER NETWORKS (MR15)

21

k1= rand()%m;
k2 = rand()%n;
if(arr[k1][k2]==0)
arr[k1][k2]=1;
else
arr[k1][k2]=0;
cout<<“Inducing error at line : “<<k1<<endl;
}
void checkerror(int arr[][10],int m,int n)
{
for(int i=0;i<m;i++)
{
int count = 0;
for(int j=0;j<n;j++)
{
if(arr[i][j] == 1)
count++;
}
if(count%2 == 0 && arr[i][n] != 0)
{
cout<<“Error here at line : ” <<i;
}
else if(count%2 == 1 && arr[i][n] != 1)
{
cout<<“Error here at line : ” <<i;
}

}
}

int main()
{ int m,n,arr[maxmessages][maxlength];
cout<<“Enter total number of messages”;
cin>>m;
cout<<“Enter length of each message”;
cin>>n;
initialize(arr,m,n);
print(arr,m,n);
addparbit(arr,m,n);
print(arr,m,n+1);
induceerror(arr,m,n);
print(arr,m,n+1);
checkerror(arr,m,n);
return 0;
}

III-I Sem COMPUTER NETWORKS (MR15)

22

4)
AIM: C code to implement even odd parity
Procedure :
4. EVEN AND ODD PARITY
Even parity refers to a parity checking mode in asynchronous communication systems in which an extra
bit, called a parity bit, is set to one if there is an even number of one bits in a one-byte data item. If the
number of one bits adds up to an odd number, the parity bit is set to zero.

Even parity checking may also be used in testing memory storage devices.
In asynchronous communication systems, odd parity refers to parity checking modes, where each set of
transmitted bits has an odd number of bits. If the total number of ones in the data plus the parity bit is
an odd number of ones, it is called odd parity. If the data already has an odd number of ones, the value
of the added parity bit is 0, otherwise it is 1.

Parity bits are the simplest form of error detection. Odd parity checking is used in testing memory
storage devices. The sender and receiver should agree to the use odd parity checking. Without this,
successful communication is not possible. If an odd number of bits are switched during transmission,
parity checks can detect that the data is corrupted. However, the method will fail to detect errors
introduced when an even number of bits in the same data unit is altered, as the parity will still remain
odd despite data.
Parity bits are added to transmitted messages to ensure that the number of bits with a value of one in a
set of bits add up to even or odd numbers. Even and odd parities are the two variants of parity checking
modes.
Odd parity can be more clearly explained through an example. Consider the transmitted message
1010001, which has three ones in it. This is turned into odd parity by adding a zero, making the
sequence 0 1010001. Thus, the total number of ones remain at three, an odd number. If the transmitted
message has the form 1101001, which has four ones in it, this can be turned into odd parity by adding a
one, making the sequence 1 1101001.
Code :

include <stdio.h>
define bool int

/* Function to get parity of number n. It returns 1
 if n has odd parity, and returns 0 if n has even

III-I Sem COMPUTER NETWORKS (MR15)

23

 parity */
bool getParity(unsigned int n)
{
 bool parity = 0;
 while (n)
 {
 parity = !parity;
 n = n & (n - 1);
 }
 return parity;
}

/* Driver program to test getParity() */
int main()
{
 unsigned int n = 7;
 printf("Parity of no %d = %s", n,
 (getParity(n)? "odd": "even"));

 getchar();
 return 0;
}

III-I Sem COMPUTER NETWORKS (MR15)

24

5) Implement data link protocols:
a) AIM: C code to implement unrestricted simplex protocol
procedure :

In order to appreciate the step by step development of efficient and complex
protocols such as SDLC, HDLC etc., we will begin with a simple but unrealistic
protocol. In this protocol:
Data are transmitted in one direction only
The transmitting (Tx) and receiving (Rx) hosts are always ready
Processing time can be ignored
Infinite buffer space is available
No errors occur; i.e. no damaged frames and no lost frames (perfect channel)

[HEADER.H]

#include<stdio.h>
#include<fcntl.h>
#include<string.h>
typedef struct
{
 int seqno;
 int ackno;
 char data[50];
}frame;
void from_network_layer(char buffer[])
{
 printf("Enter Data : ");
 scanf("%s",buffer);
}
void to_physical_layer(int pid1,frame *f)
{
 write(pid1,f,sizeof(frame));
}
void from_physical_layer(int pid1,frame *f)
{
 read(pid1,f,sizeof(frame));
}
void to_network_layer(char buffer[])
{
 printf("\n%s",buffer);
}

III-I Sem COMPUTER NETWORKS (MR15)

25

[SENDER SIDE]

#include<stdio.h>
#include<fcntl.h>
#include<string.h>
#include "header.h"
void main()
{
 int pid1,i,no;
 char buffer[50];
 frame f;
 system(">pipe1");
 pid1=open("pipe1",O_WRONLY);
 printf("Enter NUMBER OF DATA : ");
 scanf("%d",&no);
 write(pid1,&no,sizeof(no));
 for(i=0;i<no;i++)
 {
 from_network_layer(buffer);
 strcpy(f.data,buffer);
 to_physical_layer(pid1,&f);
 }
 close(pid1);
}

[RECEIVER SIDE]

#include<stdio.h>
#include<fcntl.h>
#include<string.h>
#include "header.h"
void main()
{
 int pid1,no,i;
 char buffer[50];
 frame f;
 pid1=open("pipe1",O_RDONLY);
 read(pid1,&no,sizeof(no));
 printf("DATA RECEIVED : %d",no);
 printf("\nDATA");
 for(i=0;i<no;i++)
 {
 from_physical_layer(pid1,&f);
 strcpy(buffer,f.data);

III-I Sem COMPUTER NETWORKS (MR15)

26

 to_network_layer(buffer);
 }
 close(pid1);
 unlink("pipe1");
}

B)
AIM: C code to generate stop and wait protocol
Procedure :
Stop-and-wait ARQ, also referred to as alternating bit protocol, is a method
in telecommunications to send information between two connected devices. It ensures that
information is not lost due to dropped packets and that packets are received in the correct order. It is
the simplest automatic repeat-request (ARQ) mechanism. A stop-and-wait ARQ sender sends
one frame at a time; it is a special case of the general sliding window protocol with transmit and
receive window sizes equal to one and greater than one respectively. After sending each frame, the
sender doesn't send any further frames until it receives an acknowledgement (ACK) signal. After
receiving a valid frame, the receiver sends an ACK. If the ACK does not reach the sender before a
certain time, known as the timeout, the sender sends the same frame again. The timeout countdown
is reset after each frame transmission. The above behavior is a basic example of Stop-and-Wait.
However, real-life implementations vary to address certain issues of design.
Typically the transmitter adds a redundancy check number to the end of each frame. The receiver
uses the redundancy check number to check for possible damage. If the receiver sees that the
frame is good, it sends an ACK. If the receiver sees that the frame is damaged, the receiver discards
it and does not send an ACK—pretending that the frame was completely lost, not merely damaged.
One problem is when the ACK sent by the receiver is damaged or lost. In this case, the sender
doesn't receive the ACK, times out, and sends the frame again. Now the receiver has two copies of
the same frame, and doesn't know if the second one is a duplicate frame or the next frame of the
sequence carrying identical data.
Another problem is when the transmission medium has such a long latency that the sender's timeout
runs out before the frame reaches the receiver. In this case the sender resends the same packet.
Eventually the receiver gets two copies of the same frame, and sends an ACK for each one. The
sender, waiting for a single ACK, receives two ACKs, which may cause problems if it assumes that
the second ACK is for the next frame in the sequence.
To avoid these problems, the most common solution is to define a 1 bit sequence number in the
header of the frame. This sequence number alternates (from 0 to 1) in subsequent frames. When the
receiver sends an ACK, it includes the sequence number of the next packet it expects. This way, the
receiver can detect duplicated frames by checking if the frame sequence numbers alternate. If two
subsequent frames have the same sequence number, they are duplicates, and the second frame is
discarded. Similarly, if two subsequent ACKs reference the same sequence number, they are
acknowledging the same frame.
Stop-and-wait ARQ is inefficient compared to other ARQs, because the time between packets, if the
ACK and the data are received successfully, is twice the transit time (assuming the turnaround time
can be zero). The throughput on the channel is a fraction of what it could be. To solve this problem,
one can send more than one packet at a time with a larger sequence number and use one ACK for a
set. This is what is done in Go-Back-N ARQ and the Selective Repeat ARQ.

Code :
#include <cnet.h>
#include <stdlib.h>
#include <string.h>

https://en.wikipedia.org/wiki/Alternating_bit_protocol
https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Automatic_repeat-request
https://en.wikipedia.org/wiki/Frame_(telecommunications)
https://en.wikipedia.org/wiki/Sliding_window_protocol
https://en.wikipedia.org/wiki/Acknowledgement_(data_networks)
https://en.wikipedia.org/wiki/Redundancy_check
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Go-Back-N_ARQ
https://en.wikipedia.org/wiki/Selective_Repeat_ARQ

III-I Sem COMPUTER NETWORKS (MR15)

27

/* This is an implementation of a stop-and-wait data link protocol.
 It is based on Tanenbaum's `protocol 4', 2nd edition, p227
 (or his 3rd edition, p205).
 This protocol employs only data and acknowledgement frames -
 piggybacking and negative acknowledgements are not used.

 It is currently written so that only one node (number 0) will
 generate and transmit messages and the other (number 1) will receive
 them. This restriction seems to best demonstrate the protocol to
 those unfamiliar with it.
 The restriction can easily be removed by "commenting out" the line

 if(nodeinfo.nodenumber == 0)

 in reboot_node(). Both nodes will then transmit and receive (why?).

 Note that this file only provides a reliable data-link layer for a
 network of 2 nodes.
 */

typedef enum { DL_DATA, DL_ACK } FRAMEKIND;

typedef struct {
 char data[MAX_MESSAGE_SIZE];
} MSG;

typedef struct {
 FRAMEKIND kind; /* only ever DL_DATA or DL_ACK */
 unsigned int len; /* the length of the msg field only */
 int checksum; /* checksum of the whole frame */
 int seq; /* only ever 0 or 1 */
 MSG msg;
} FRAME;

#define FRAME_HEADER_SIZE (sizeof(FRAME) - sizeof(MSG))
#define FRAME_SIZE(f) (FRAME_HEADER_SIZE + f.len)

static MSG *lastmsg;
static unsigned int lastlength = 0;
static CnetTimerID lasttimer = NULLTIMER;

static int ackexpected = 0;
static int nextframetosend = 0;
static int frameexpected = 0;

III-I Sem COMPUTER NETWORKS (MR15)

28

static void transmit_frame(MSG *msg, FRAMEKIND kind,
 unsigned int length, int seqno)
{
 FRAME f;
 int link = 1;

 f.kind = kind;
 f.seq = seqno;
 f.checksum = 0;
 f.len = length;

 switch (kind) {
 case DL_ACK :
 printf("ACK transmitted, seq=%d\n", seqno);
 break;

 case DL_DATA: {
 CnetTime timeout;

 printf(" DATA transmitted, seq=%d\n", seqno);
 memcpy(&f.msg, (char *)msg, (int)length);

 timeout = FRAME_SIZE(f)*((CnetTime)8000000 / linkinfo[link].bandwidth) +
 linkinfo[link].propagationdelay;

 lasttimer = CNET_start_timer(EV_TIMER1, 3 * timeout, 0);
 break;
 }
 }
 length = FRAME_SIZE(f);
 f.checksum = CNET_ccitt((unsigned char *)&f, (int)length);
 CHECK(CNET_write_physical(link, (char *)&f, &length));
}

static void application_ready(CnetEvent ev, CnetTimerID timer, CnetData data)
{
 CnetAddr destaddr;

 lastlength = sizeof(MSG);
 CHECK(CNET_read_application(&destaddr, (char *)lastmsg, &lastlength));
 CNET_disable_application(ALLNODES);

 printf("down from application, seq=%d\n", nextframetosend);
 transmit_frame(lastmsg, DL_DATA, lastlength, nextframetosend);

III-I Sem COMPUTER NETWORKS (MR15)

29

 nextframetosend = 1-nextframetosend;
}

static void physical_ready(CnetEvent ev, CnetTimerID timer, CnetData data)
{
 FRAME f;
 unsigned int len;
 int link, checksum;

 len = sizeof(FRAME);
 CHECK(CNET_read_physical(&link, (char *)&f, &len));

 checksum = f.checksum;
 f.checksum = 0;
 if(CNET_ccitt((unsigned char *)&f, (int)len) != checksum) {
 printf("\t\t\t\tBAD checksum - frame ignored\n");
 return; /* bad checksum, ignore frame */
 }

 switch (f.kind) {
 case DL_ACK :
 if(f.seq == ackexpected) {
 printf("\t\t\t\tACK received, seq=%d\n", f.seq);
 CNET_stop_timer(lasttimer);
 ackexpected = 1-ackexpected;
 CNET_enable_application(ALLNODES);
 }
 break;

 case DL_DATA :
 printf("\t\t\t\tDATA received, seq=%d, ", f.seq);
 if(f.seq == frameexpected) {
 printf("up to application\n");
 len = f.len;
 CHECK(CNET_write_application((char *)&f.msg, &len));
 frameexpected = 1-frameexpected;
 }
 else
 printf("ignored\n");
 transmit_frame((MSG *)NULL, DL_ACK, 0, f.seq);
 break;
 }
}

static void draw_frame(CnetEvent ev, CnetTimerID timer, CnetData data)

III-I Sem COMPUTER NETWORKS (MR15)

30

{
 CnetDrawFrame *df = (CnetDrawFrame *)data;
 FRAME *f = (FRAME *)df->frame;

 switch (f->kind) {
 case DL_ACK :
 df->colour[0] = (f->seq == 0) ? CN_RED : CN_PURPLE;
 df->pixels[0] = 10;
 sprintf(df->text, "%d", f->seq);
 break;

 case DL_DATA :
 df->colour[0] = (f->seq == 0) ? CN_RED : CN_PURPLE;
 df->pixels[0] = 10;
 df->colour[1] = CN_GREEN;
 df->pixels[1] = 30;
 sprintf(df->text, "data=%d", f->seq);
 break;
 }
}

static void timeouts(CnetEvent ev, CnetTimerID timer, CnetData data)
{
 if(timer == lasttimer) {
 printf("timeout, seq=%d\n", ackexpected);
 transmit_frame(lastmsg, DL_DATA, lastlength, ackexpected);
 }
}

static void showstate(CnetEvent ev, CnetTimerID timer, CnetData data)
{
 printf(
 "\n\tackexpected\t= %d\n\tnextframetosend\t= %d\n\tframeexpected\t= %d\n",
 ackexpected, nextframetosend, frameexpected);
}

void reboot_node(CnetEvent ev, CnetTimerID timer, CnetData data)
{
 if(nodeinfo.nodenumber > 1) {
 fprintf(stderr,"This is not a 2-node network!\n");
 exit(1);
 }

 lastmsg = malloc(sizeof(MSG));

III-I Sem COMPUTER NETWORKS (MR15)

31

 CHECK(CNET_set_handler(EV_APPLICATIONREADY, application_ready, 0));
 CHECK(CNET_set_handler(EV_PHYSICALREADY, physical_ready, 0));
 CHECK(CNET_set_handler(EV_DRAWFRAME, draw_frame, 0));
 CHECK(CNET_set_handler(EV_TIMER1, timeouts, 0));
 CHECK(CNET_set_handler(EV_DEBUG0, showstate, 0));

 CHECK(CNET_set_debug_string(EV_DEBUG0, "State"));

 if(nodeinfo.nodenumber == 1)
 CNET_enable_application(ALLNODES);
}

c)
AIM: C code to implement noisy channel

Procedure :
Definition

Given an alphabet , let be the set of all finite strings over . Let the dictionary of

valid words be some subset of , i.e., .
The noisy channel is the matrix

,

where is the intended word and is the scrambled word that was actually received.
Example

Consider the English alphabet . Some subset makes up the dictionary of valid English
words.
There are several mistakes that may occur while typing, including:
Missing letters, e.g., leter instead of letter
Accidental letter additions, e.g., misstake instead of mistake
Swapping letters, e.g., recieved instead of received
Replacing letters, e.g., fimite instead of finite

To construct the noisy channel matrix , we must consider the probability of each mistake, given

the intended word (for all and). These probabilities may be gathered, for example,

by considering the Levenshtein distance between and or by comparing the draft of an
essay with one that has been manually edited for spelling.
Error-correction
The goal of the noisy channel model is to find the intended word given the scrambled word that was

received. The decision function is a function that, given a scrambled word, returns the
intended word.

https://en.wikipedia.org/wiki/Levenshtein_distance

III-I Sem COMPUTER NETWORKS (MR15)

32

Methods of constructing a decision function include the maximum likelihood rule, the maximum a
posteriori rule, and the minimum distance rule.
In some cases, it may be better to accept the scrambled word as the intended word rather than
attempt to find an intended word in the dictionary. For example, the word schönfinkeling may not be
in the dictionary, but might in fact be the intended word.

Code :
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<dos.h>
using namespace std;
#define time 5
#define max_seq 1
#define tot_pack 5
int randn(int n)
{
 return rand()%n + 1;
}
typedef struct
{
 int data;
}packet;
typedef struct
{
 int kind;
 int seq;
 int ack;
 packet info;
}frame;
typedef enum{ frame_arrival,error,time_out}event_type;
frame data1;
//creating prototype
void from_network_layer(packet *);
void to_physical_layer(frame *);
void to_network_layer(packet *);
void from_physical_layer(frame*);
void sender();
void receiver();
void wait_for_event_sender(event_type *);
void wait_for_event_receiver(event_type *);
//end

#define inc(k) if(k<max_seq)k++;else k=0;

https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Maximum_a_posteriori
https://en.wikipedia.org/wiki/Maximum_a_posteriori
https://en.wikipedia.org/wiki/Minimum_distance_estimation
https://en.wikipedia.org/wiki/Sch%C3%B6nfinkeling

III-I Sem COMPUTER NETWORKS (MR15)

33

int i=1;
char turn;
int disc=0;
int main()
{
 while(!disc)
 { sender();
 // delay(400);
 receiver();
 }
 getchar();
}
void sender()
{
 static int frame_to_send=0;
 static frame s;
 packet buffer;
 event_type event;
 static int flag=0; //first place
 if (flag==0)
 {
 from_network_layer(&buffer);
 s.info=buffer;
 s.seq=frame_to_send;
 cout<<"\nsender information \t"<<s.info.data<<"\n";
 cout<<"\nsequence no. \t"<<s.seq;

 turn='r';
 to_physical_layer(&s);
 flag=1;
 }

 wait_for_event_sender(&event);
 if(turn=='s')
 {
 if(event==frame_arrival)
 {
 from_network_layer(&buffer);
 inc(frame_to_send);
 s.info=buffer;
 s.seq=frame_to_send;
 cout<<"\nsender information \t"<<s.info.data<<"\n";
 cout<<"\nsequence no. \t"<<s.seq<<"\n";

III-I Sem COMPUTER NETWORKS (MR15)

34

 getch();
 turn='r';
 to_physical_layer(&s);
 }

 }

} //end of sender function

void from_network_layer(packet *buffer)
{
 (*buffer).data=i;
 i++;
} //end of from network layer function

void to_physical_layer(frame *s)
{

 data1=*s;
} //end of to physical layer function

void wait_for_event_sender(event_type *e)
{
 static int timer=0;
 if(turn=='s')
 { timer++;
 //timer=0;
 return ;
 }

 else //event is frame arrival
 {
 timer=0;
 *e=frame_arrival;
 }

} //end of wait for event function

III-I Sem COMPUTER NETWORKS (MR15)

35

void receiver()
{
 static int frame_expected=0;
 frame s,r;
 event_type event;
 wait_for_event_receiver(&event);
 if(turn=='r')
 { if(event==frame_arrival)
 {
 from_physical_layer(&r);
 if(r.seq==frame_expected)
 {
 to_network_layer(&r.info);
 inc (frame_expected);
 }
 else
 cout<<"\nReceiver :Acknowledgement resent \n";
 getch();
 turn='s';
 to_physical_layer(&s);
 }

 }
} //end of receiver function

void wait_for_event_receiver(event_type *e)
{
 if(turn=='r')
 {
 *e=frame_arrival;
 }
}

void from_physical_layer(frame *buffer)
{
 *buffer=data1;
}

void to_network_layer(packet *buffer)
{
 cout<<"\nReceiver : packet received \t"<< i-1;

III-I Sem COMPUTER NETWORKS (MR15)

36

 cout<<"\n Acknowledgement sent \t";
 getch();
 if(i>tot_pack)
 { disc=1;
 cout<<"\ndiscontinue\n";
 }
} //end of network layer function

6) Implementation of sliding window protocols
a) Aim: C code to implement 1-bit sliding window protocol
Procedure :
The transmitter and receiver each have a current sequence number nt and nr, respectively. They
each also have a window size wt and wr. The window sizes may vary, but in simpler implementations
they are fixed. The window size must be greater than zero for any progress to be made.
As typically implemented, nt is the next packet to be transmitted, i.e. the sequence number of the first
packet not yet transmitted. Likewise, nr is the first packet not yet received. Both numbers
are monotonically increasing with time; they only ever increase.
The receiver may also keep track of the highest sequence number yet received; the variable ns is
one more than the sequence number of the highest sequence number received. For simple
receivers that only accept packets in order (wr = 1), this is the same as nr, but can be greater if wr >
1. Note the distinction: all packets below nr have been received, no packets above ns have been
received, and between nr and ns, some packets have been received.
When the receiver receives a packet, it updates its variables appropriately and transmits an
acknowledgment with the new nr. The transmitter keeps track of the highest acknowledgment it has
received na. The transmitter knows that all packets up to, but not including na have been received,
but is uncertain about packets between na and ns; i.e. na ≤ nr ≤ ns.
The sequence numbers always obey the rule that na ≤ nr ≤ ns ≤ nt ≤ na + wt. That is:
na ≤ nr: The highest acknowledgement received by the transmitter cannot be higher than the
highest nr acknowledged by the receiver.
nr ≤ ns: The span of fully received packets cannot extend beyond the end of the partially received
packets.
ns ≤ nt: The highest packet received cannot be higher than the highest packet sent.
nt ≤ na + wt: The highest packet sent is limited by the highest acknowledgement received and the
transmit window size.

T
Code :

1
2
3
4
5
6

#include<stdio.h>

int main()
{
 int w,i,f,frames[50];

https://en.wikipedia.org/wiki/Monotonically_increasing

III-I Sem COMPUTER NETWORKS (MR15)

37

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

 printf("Enter window size: ");
 scanf("%d",&w);

 printf("\nEnter number of frames to transmit: ");
 scanf("%d",&f);

 printf("\nEnter %d frames: ",f);

 for(i=1;i<=f;i++)
 scanf("%d",&frames[i]);

 printf("\nWith sliding window protocol the frames will be sent in the following manner (assuming no
corruption of frames)\n\n");
 printf("After sending %d frames at each stage sender waits for acknowledgement sent by the
receiver\n\n",w);

 for(i=1;i<=f;i++)
 {
 if(i%w==0)
 {
 printf("%d\n",frames[i]);
 printf("Acknowledgement of above frames sent is received by sender\n\n");
 }
 else
 printf("%d ",frames[i]);
 }

 if(f%w!=0)
 printf("\nAcknowledgement of above frames sent is received by sender\n");

 return 0;
}

b) AIM: To develop goback-N sliding window protocol
#include<stdio.h>
#include<conio.h>
void main()
{
char sender[50],receiver[50];
int i,winsize;
clrscr();
 printf("\n ENTER THE WINDOWS SIZE : ");
scanf("%d",&winsize);
 printf("\n SENDER WINDOW IS EXPANDED TO STORE MESSAGE OR WINDOW \n");
 printf("\n ENTER THE DATA TO BE SENT: ");
fflush(stdin);
gets(sender);

III-I Sem COMPUTER NETWORKS (MR15)

38

for(i=0;i<winsize;i++)
receiver[i]=sender[i];
receiver[i]=NULL;
 printf("\n MESSAGE SEND BY THE SENDER:\n");
 puts(sender);
 printf("\n WINDOW SIZE OF RECEIVER IS EXPANDED\n");
 printf("\n ACKNOWLEDGEMENT FROM RECEIVER \n");
for(i=0;i<winsize;i++);
printf("\n ACK:%d",i);
 printf("\n MESSAGE RECEIVED BY RECEIVER IS : ");
 puts(receiver);
 printf("\n WINDOW SIZE OF RECEIVER IS SHRINKED \n");
getch();
}
c)Aim:to develop selective repeate window protocol
 //inculsion
#include<iostream>
#include<stdio.h>

#include<sys/types.h>
#include<netinet/in.h>
#include<netdb.h>

#define cls() printf(“33[H33[J”)

 //structure definition for designing the packet.
struct frame
{
 int packet[40];
};

 //structure definition for accepting the acknowledgement.
struct ack
{
 int acknowledge[40];
};

int main()
{
 int serversocket;
 sockaddr_in serveraddr,clientaddr;
 socklen_t len;
 int windowsize,totalpackets,totalframes,framessend=0,i=0,j=0,k,l,m,n,repacket[40];
 ack acknowledgement;
 frame f1;
 char req[50];

III-I Sem COMPUTER NETWORKS (MR15)

39

 serversocket=socket(AF_INET,SOCK_DGRAM,0);

 bzero((char*)&serveraddr,sizeof(serveraddr));
 serveraddr.sin_family=AF_INET;
 serveraddr.sin_port=htons(5018);
 serveraddr.sin_addr.s_addr=INADDR_ANY;

 bind(serversocket,(sockaddr*)&serveraddr,sizeof(serveraddr));

 bzero((char*)&clientaddr,sizeof(clientaddr));
 len=sizeof(clientaddr);

 //connection establishment.
 printf(“\nWaiting for client connection.\n”);
 recvfrom(serversocket,req,sizeof(req),0,(sockaddr*)&clientaddr,&len);
 printf(“\nThe client connection obtained.\t%s\n”,req);

 //sending request for windowsize.
 printf(“\nSending request for window size.\n”);
 sendto(serversocket,”REQUEST FOR WINDOWSIZE.”,sizeof(“REQUEST FOR
WINDOWSIZE.”),0,(sockaddr*)&clientaddr,sizeof(clientaddr));

 //obtaining windowsize.
 printf(“\nWaiting for the windowsize.\n”);
 recvfrom(serversocket,(char*)&windowsize,sizeof(windowsize),0,(sockaddr*)&clientaddr,&len);
 cls();
 printf(“\nThe windowsize obtained as:\t%d\n”,windowsize);

 printf(“\nObtaining packets from network layer.\n”);
 printf(“\nTotal packets obtained:\t%d\n”,(totalpackets=windowsize*5));
 printf(“\nTotal frames or windows to be transmitted:\t%d\n”,(totalframes=5));

 //sending details to client.
 printf(“\nSending total number of packets.\n”);
 sendto(serversocket,(char*)&totalpackets,sizeof(totalpackets),0,(sockaddr*)&clientaddr,sizeof(clientad
dr));
 recvfrom(serversocket,req,sizeof(req),0,(sockaddr*)&clientaddr,&len);

 printf(“\nSending total number of frames.\n”);
 sendto(serversocket,(char*)&totalframes,sizeof(totalframes),0,(sockaddr*)&clientaddr,sizeof(clientadd
r));
 recvfrom(serversocket,req,sizeof(req),0,(sockaddr*)&clientaddr,&len);

 printf(“\nPRESS ENTER TO START THE PROCESS.\n”);
 fgets(req,2,stdin);
 cls();

III-I Sem COMPUTER NETWORKS (MR15)

40

 j=0;
 l=0; //starting the process of sending
 while(l<totalpackets)
 {
 //initialising the transmit buffer.
 bzero((char*)&f1,sizeof(f1));
 printf(“\nInitialising the transmit buffer.\n”);
 printf(“\nThe frame to be send is %d with packets:\t”,framessend);
 //Builting the frame.
 for(m=0;m<j;m++)
 {
 //including the packets for which negative acknowledgement was received.
 printf(“%d “,repacket[m]);
 f1.packet[m]=repacket[m];
 }

 while(j<windowsize && i<totalpackets)
 {
 printf(“%d “,i);
 f1.packet[j]=i;
 i++;
 j++;
 }
 printf(“\nSending frame %d\n”,framessend);

 //sending the frame.
 sendto(serversocket,(char*)&f1,sizeof(f1),0,(sockaddr*)&clientaddr,sizeof(clientaddr));
 //Waiting for the acknowledgement.
 printf(“\nWaiting for the acknowledgement.\n”);
 recvfrom(serversocket,(char*)&acknowledgement,sizeof(acknowledgement),0,(sockaddr*)&clientaddr,
&len);
 cls();

 //Checking acknowledgement of each packet.
 j=0;
 k=0;
 m=0;
 n=l;
 while(m<windowsize && n<totalpackets)
 {
 if(acknowledgement.acknowledge[m]==-1)
 {
 printf(“\nNegative acknowledgement received for packet: %d\n”,f1.packet[m]);
 k=1;
 repacket[j]=f1.packet[m];
 j++;

III-I Sem COMPUTER NETWORKS (MR15)

41

 }
 else
 {
 l++;
 }
 m++;
 n++;
 }

 if(k==0)
 {
 printf(“\nPositive acknowledgement received for all packets within the frame: %d\n”,framessend);
 }

 framessend++;
 printf(“\nPRESS ENTER TO PROCEED……\n”);
 fgets(req,2,stdin);
 cls();
 }

 printf(“\nAll frames send successfully.\n\nClosing connection with the client.\n”);
 close(serversocket);
}

c) Selective window sliding protocol
Aim: To implement Selective window sliding protocol
Procedure :

Transmitter operation[edit]
Whenever the transmitter has data to send, it may transmit up to wt packets ahead of the latest
acknowledgment na. That is, it may transmit packet number nt as long as nt < na+wt.
In the absence of a communication error, the transmitter soon receives an acknowledgment for all
the packets it has sent, leaving na equal to nt. If this does not happen after a reasonable delay, the
transmitter must retransmit the packets between na and nt.
Techniques for defining "reasonable delay" can be extremely elaborate, but they only affect
efficiency; the basic reliability of the sliding window protocol does not depend on the details.

Receiver operation[edit]
Every time a packet numbered x is received, the receiver checks to see if it falls in the receive
window, nr ≤ x < nr+wr. (The simplest receivers only have to keep track of one value nr=ns.) If it falls
within the window, the receiver accepts it. If it is numbered nr, the receive sequence number is
increased by 1, and possibly more if further consecutive packets were previously received and
stored. If x > nr, the packet is stored until all preceding packets have been received.[1] If x≥ns, the
latter is updated to ns=x+1.
If the packet's number is not within the receive window, the receiver discards it and does not
modify nr or ns.

https://en.wikipedia.org/w/index.php?title=Sliding_window_protocol&action=edit§ion=3
https://en.wikipedia.org/w/index.php?title=Sliding_window_protocol&action=edit§ion=4
https://en.wikipedia.org/wiki/Sliding_window_protocol#cite_note-1

III-I Sem COMPUTER NETWORKS (MR15)

42

Whether the packet was accepted or not, the receiver transmits an acknowledgment containing the
current nr. (The acknowledgment may also include information about additional packets received
between nr or ns, but that only helps efficiency.)
Note that there is no point having the receive window wr larger than the transmit window wt, because
there is no need to worry about receiving a packet that will never be transmitted; the useful range is
1 ≤ wr ≤ wt.

Sequence number range required[edit]
Main article: serial number arithmetic

Sequence numbers modulo 4, with wr=1. Initially, nt=nr=0

So far, the protocol has been described as if sequence numbers are of unlimited size, ever-
increasing. However, rather than transmitting the full sequence number x in messages, it is possible
to transmit only x mod N, for some finite N. (N is usually a power of 2.)
For example, the transmitter will only receive acknowledgments in the range na to nt, inclusive. Since
it guarantees that nt−na ≤ wt, there are at most wt+1 possible sequence numbers that could arrive at
any given time. Thus, the transmitter can unambiguously decode the sequence number as long
as N > wt.
A stronger constraint is imposed by the receiver. The operation of the protocol depends on the
receiver being able to reliably distinguish new packets (which should be accepted and processed)
from retransmissions of old packets (which should be discarded, and the last acknowledgment
retransmitted). This can be done given knowledge of the transmitter's window size. After receiving a
packet numbered x, the receiver knows that x < na+wt, so na > x−wt. Thus, packets
numbered x−wt will never again be retransmitted.
The lowest sequence number we will ever receive in future is ns−wt
The receiver also knows that the transmitter's na cannot be higher than the highest acknowledgment
ever sent, which is nr. So the highest sequence number we could possibly see is nr+wt ≤ ns+wt.
Thus, there are 2wt different sequence numbers that the receiver can receive at any one time. It
might therefore seem that we must have N ≥ 2wt. However, the actual limit is lower.
The additional insight is that the receiver does not need to distinguish between sequence numbers
that are too low (less than nr) or that are too high (greater than or equal to ns+wr). In either case, the
receiver ignores the packet except to retransmit an acknowledgment. Thus, it is only necessary
that N ≥ wt+wr. As it is common to have wr<wt (e.g. see Go-Back-Nbelow), this can permit
larger wt within a fixed N.

Code :

#include<stdio.h>
#include<stdlib.h>

https://en.wikipedia.org/w/index.php?title=Sliding_window_protocol&action=edit§ion=5
https://en.wikipedia.org/wiki/Serial_number_arithmetic
https://en.wikipedia.org/wiki/Power_of_2
https://en.wikipedia.org/wiki/Sliding_window_protocol#Go-Back-N

III-I Sem COMPUTER NETWORKS (MR15)

43

main()
int i,m,n,j,w,1;
char c;
FILE*f;
f=fopen("text.txt","r");
printf("window size");
scanf("%d",&n);
m=n;
while(!fof(f))
{
i=rand()%n+1;
j=i;
1=i;
if(m>i)
{
m=m-i;
if(m>0)
{
printf("\n");
while(i>0 & !feof(f))
{
c=getc(f);
printf("%c",c);
i--;
}
printf("\n%d transferred"j);
if(j>3)
printf("\n 1 acknowledgement received");
else
printf("\n acknowledgement received",j+1);
}
}
m=m+j-1;}

7.Implementation of Routing Protocols
a).Shortest Path
Aim:To implement Shortest path
Procedure :
Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, which
may represent, for example, road networks. It was conceived by computer scientist Edsger W.
Dijkstra in 1956 and published three years later.[1][2][3]
The algorithm exists in many variants; Dijkstra's original variant found the shortest path between two
nodes,[3] but a more common variant fixes a single node as the "source" node and finds shortest
paths from the source to all other nodes in the graph, producing a shortest-path tree.
For a given source node in the graph, the algorithm finds the shortest path between that node and
every other.[4]:196–206 It can also be used for finding the shortest paths from a single node to a single
destination node by stopping the algorithm once the shortest path to the destination node has been

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://en.wikipedia.org/wiki/Computer_scientist
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-1
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-Dijkstra_Interview-2
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-Dijkstra1959-3
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-Dijkstra1959-3
https://en.wikipedia.org/wiki/Shortest-path_tree
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-mehlhorn-4

III-I Sem COMPUTER NETWORKS (MR15)

44

determined. For example, if the nodes of the graph represent cities and edge path costs represent
driving distances between pairs of cities connected by a direct road, Dijkstra's algorithm can be used
to find the shortest route between one city and all other cities. As a result, the shortest path
algorithm is widely used in network routing protocols, most notably IS-IS (Intermediate System to
Intermediate System) and Open Shortest Path First (OSPF). It is also employed as a subroutine in
other algorithms such as Johnson's.

Dijkstra's original algorithm does not use a min-priority queue and runs in time (where is
the number of nodes). The idea of this algorithm is also given in Leyzorek et al. 1957. The
implementation based on a min-priority queue implemented by a Fibonacci heap and running

in (where is the number of edges) is due to Fredman & Tarjan 1984. This
is asymptotically the fastest known single-source shortest-path algorithm for arbitrary directed
graphs with unbounded non-negative weights. However, specialized cases (such as
bounded/integer weights, directed acyclic graphs etc.) can indeed be improved further as detailed
in § Specialized variants.
In some fields, artificial intelligence in particular, Dijkstra's algorithm or a variant of it is known
as uniform cost search and formulated as an instance of the more general idea of best-first
search.[5]

Source Code:
#include <stdio.h>
#define MAX 7
#define INFINITE 998
int allselected(int *selected)
{
 int i;
 for(i=0;i<MAX;i++)
 if(selected[i]==0)
 return 0;
 return 1;
}
void shortpath(int cost[][MAX],int *preced,int *distance)
{
 int selected[MAX]={0};
 int current=0,i,k,dc,smalldist,newdist;
 for(i=0;i<MAX;i++)
 distance[i]=INFINITE;
 selected[current]=1;
 distance[0]=0;
 current=0;
 while(!allselected(selected))
 {
 smalldist=INFINITE;
 dc=distance[current];
 for(i=0;i<MAX;i++)
 {
 if(selected[i]==0)

https://en.wikipedia.org/wiki/Routing_protocol
https://en.wikipedia.org/wiki/IS-IS
https://en.wikipedia.org/wiki/OSPF
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Johnson%27s_algorithm
https://en.wikipedia.org/wiki/Min-priority_queue
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#CITEREFLeyzorekGrayJohnsonLadew1957
https://en.wikipedia.org/wiki/Fibonacci_heap
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#CITEREFFredmanTarjan1984
https://en.wikipedia.org/wiki/Asymptotic_computational_complexity
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#Specialized_variants
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Best-first_search
https://en.wikipedia.org/wiki/Best-first_search
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-felner-5

III-I Sem COMPUTER NETWORKS (MR15)

45

 {
 newdist=dc+cost[current][i];
 if(newdist<distance[i])
 {
 distance[i]=newdist;

 preced[i]=current;
 }
 if(distance[i]<smalldist)
 {
 smalldist=distance[i];
 k=i;
 }
 }
 }
 current=k;
 selected[current]=1;
 }
}

int main()
{
 int
cost[MAX][MAX]={{INFINITE,2,4,7,INFINITE,5,INFINITE},{2,INFINITE,INFINITE,6,3,INFINITE,8},{4,INFINITE,I
NFINITE,INFINITE,INFINITE,6,INFINITE},{7,6,INFINITE,INFINITE,INFINITE,1,6},{INFINITE,3,INFINITE,INFINIT
E,INFINITE,INFINITE,7},{5,INFINITE,6,1,INFINITE,INFINITE,6},{INFINITE,8,INFINITE,6,7,6,INFINITE}};
 int i,preced[MAX]={0},distance[MAX];
 shortpath(cost,preced,distance);
 for(i=0;i<MAX;i++)
 printf("%d\n",distance[i]);

 return 0;
}

b).Distance Vector Routing
Aim:
 To implementing the distance vector routing algorithm.
Source Code:

III-I Sem COMPUTER NETWORKS (MR15)

46

#include<stdio.h>
#include<conio.h>
void main()
{
int path[5][5],i,j,min,a[5][5],p,st=1,ed=5,stp,edp,t[5],index;
clrscr();
printf("enter the cost matrix\n");
for(i=1;i<=5;i++)
for(j=1;j<=5;j++)
scanf("%d",&a[i][j]);
printf("enter the paths\n");
scanf("%d",&p);
printf("enter possible paths\n");
for(i=1;i<=p;i++)
for(j=1;j<=5;j++)
scanf("%d",&path[i][j]);
for(i=1;i<=p;i++)
{
t[i]=0;
stp=st;
for(j=1;j<=5;j++)
{
edp=path[i][j+1];
t[i]=t[i]+a[stp][edp];
if(edp==ed)
break;
else
stp=edp;
}
}
min=t[st];index=st;
for(i=1;i<=p;i++)
{
if(min>t[i])
{
min=t[i];
index=i;
}
}
printf("minimum cost %d",min);
printf("\n minimum cost path ");
for(i=1;i<=5;i++)
{
printf("--> %d",path[index][i]);
if(path[index][i]==ed)
break;
}

III-I Sem COMPUTER NETWORKS (MR15)

47

getch();
}

c)Link State Routing Protocol
Aim : To implement Link state Routing Protocol
Procedure :
Link-state routing protocols are one of the two main classes of routing protocols used in packet
switching networks for computer communications, the other being distance-vector routing protocols.
Examples of link-state routing protocols include Open Shortest Path First (OSPF) and intermediate
system to intermediate system (IS-IS).
The link-state protocol is performed by every switching node in the network (i.e., nodes that are
prepared to forward packets; in the Internet, these are called routers). The basic concept of link-state
routing is that every node constructs a map of the connectivity to the network, in the form of a graph,
showing which nodes are connected to which other nodes. Each node then independently calculates
the next best logical path from it to every possible destination in the network. Each collection of best
paths will then form each node's routing table.
This contrasts with distance-vector routing protocols, which work by having each node share its
routing table with its neighbours. In a link-state protocol the only information passed between nodes
is connectivity related. Link-state algorithms are sometimes characterized informally as each router,
"telling the world about its neighbours."

Code :

#include<stdio.h>
struct node
{
 unsigned dist[20];

https://en.wikipedia.org/wiki/Routing_protocol
https://en.wikipedia.org/wiki/Packet_switching
https://en.wikipedia.org/wiki/Packet_switching
https://en.wikipedia.org/wiki/Computer_communication
https://en.wikipedia.org/wiki/Distance-vector_routing_protocol
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/IS-IS
https://en.wikipedia.org/wiki/IS-IS
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Routing_table
https://en.wikipedia.org/wiki/Distance-vector_routing_protocol

III-I Sem COMPUTER NETWORKS (MR15)

48

 unsigned from[20];
}rt[10];
int main()
{
 int costmat[20][20];
 int nodes,i,j,k,count=0;
 printf("\nEnter the number of nodes : ");
 scanf("%d",&nodes);//Enter the nodes
 printf("\nEnter the cost matrix :\n");
 for(i=0;i<nodes;i++)
 {
 for(j=0;j<nodes;j++)
 {
 scanf("%d",&costmat[i][j]);
 costmat[i][i]=0;
 rt[i].dist[j]=costmat[i][j];//initialise the distance equal to cost matrix
 rt[i].from[j]=j;
 }
 }
 do
 {
 count=0;
 for(i=0;i<nodes;i++)//We choose arbitary vertex k and we calculate the direct distance from the
node i to k using the cost matrix
 //and add the distance from k to node j
 for(j=0;j<nodes;j++)
 for(k=0;k<nodes;k++)
 if(rt[i].dist[j]>costmat[i][k]+rt[k].dist[j])
 {//We calculate the minimum distance
 rt[i].dist[j]=rt[i].dist[k]+rt[k].dist[j];
 rt[i].from[j]=k;
 count++;
 }
 }while(count!=0);
 for(i=0;i<nodes;i++)
 {
 printf("\n\n For router %d\n",i+1);
 for(j=0;j<nodes;j++)
 {
 printf("\t\nnode %d via %d Distance %d ",j+1,rt[i].from[j]+1,rt[i].dist[j]);
 }
 }
 printf("\n\n");
 getch();
}

III-I Sem COMPUTER NETWORKS (MR15)

49

 8. Implementation of congestion algorithm
a) Token Bucket algorithm
Aim: To implement Token Bucket algorithm
Procedure :
The token bucket algorithm is based on an analogy of a fixed capacity bucket into which tokens,
normally representing a unit of bytes or a single packet of predetermined size, are added at a fixed
rate. When a packet is to be checked for conformance to the defined limits, the bucket is inspected
to see if it contains sufficient tokens at that time. If so, the appropriate number of tokens, e.g.
equivalent to the length of the packet in bytes, are removed ("cashed in"), and the packet is passed,
e.g., for transmission. The packet does not conform if there are insufficient tokens in the bucket, and
the contents of the bucket are not changed. Non-conformant packets can be treated in various ways:
They may be dropped.
They may be enqueued for subsequent transmission when sufficient tokens have accumulated in the
bucket.
They may be transmitted, but marked as being non-conformant, possibly to be dropped
subsequently if the network is overloaded.
A conforming flow can thus contain traffic with an average rate up to the rate at which tokens are
added to the bucket, and have a burstiness determined by the depth of the bucket. This burstiness
may be expressed in terms of either a jitter tolerance, i.e. how much sooner a packet might conform
(e.g. arrive or be transmitted) than would be expected from the limit on the average rate, or a burst
tolerance or maximum burst size, i.e. how much more than the average level of traffic might conform
in some finite period.

Code :

#include<stdio.h>
#include<stdlib.h>

https://en.wikipedia.org/wiki/Analogy
https://en.wikipedia.org/wiki/Bucket
https://en.wikipedia.org/wiki/Type%E2%80%93token_distinction
https://en.wikipedia.org/wiki/Network_packet

III-I Sem COMPUTER NETWORKS (MR15)

50

#include<unistd.h>

#define NOF_PACKETS 10

int rand(int a)
{
 int rn = (random() % 10) % a;
 return rn == 0 ? 1 : rn;
}

int main()
{
 int packet_sz[NOF_PACKETS], i, clk, b_size, o_rate, p_sz_rm=0, p_sz, p_time, op;
 for(i = 0; i<NOF_PACKETS; ++i)
 packet_sz[i] = rand(6) * 10;
 for(i = 0; i<NOF_PACKETS; ++i)
 printf("\npacket[%d]:%d bytes\t", i, packet_sz[i]);
 printf("\nEnter the Output rate:");
 scanf("%d", &o_rate);
 printf("Enter the Bucket Size:");
 scanf("%d", &b_size);
 for(i = 0; i<NOF_PACKETS; ++i)
 {
 if((packet_sz[i] + p_sz_rm) > b_size)
 if(packet_sz[i] > b_size)/*compare the packet siz with bucket size*/
 printf("\n\nIncoming packet size (%dbytes) is Greater than bucket capacity (%dbytes)-PACKET
REJECTED", packet_sz[i], b_size);
 else
 printf("\n\nBucket capacity exceeded-PACKETS REJECTED!!");
 else
 {
 p_sz_rm += packet_sz[i];
 printf("\n\nIncoming Packet size: %d", packet_sz[i]);
 printf("\nBytes remaining to Transmit: %d", p_sz_rm);
 p_time = rand(4) * 10;
 printf("\nTime left for transmission: %d units", p_time);
 for(clk = 10; clk <= p_time; clk += 10)
 {
 sleep(1);
 if(p_sz_rm)
 {
 if(p_sz_rm <= o_rate)/*packet size remaining comparing with output rate*/
 op = p_sz_rm, p_sz_rm = 0;
 else
 op = o_rate, p_sz_rm -= o_rate;
 printf("\nPacket of size %d Transmitted", op);
 printf("----Bytes Remaining to Transmit: %d", p_sz_rm);

III-I Sem COMPUTER NETWORKS (MR15)

51

 }
 else
 {
 printf("\nTime left for transmission: %d units", p_time-clk);
 printf("\nNo packets to transmit!!");
 }
 }
 }
 }
}

b)Leaky Bucket Algorithm
Aim : To implement Leaky Bucket Algorithm
Procedure :
The leaky bucket is an algorithm based on an analogy of how a bucket with a leak will overflow if
either the average rate at which water is poured in exceeds the rate at which the bucket leaks or if
more water than the capacity of the bucket is poured in all at once, and how the water leaks from the
bucket at an (almost) constant rate. It can be used to determine whether some sequence of discrete
events conforms to defined limits on their average and peak rates or frequencies, or to directly limit
the actions associated to these events to these rates, and may be used to limit these actions to an
average rate alone, i.e. remove any variation from the average.
It is used in packet switched computer networks and telecommunications networks in both the traffic
policing and traffic shaping of data transmissions, in the form of packets,[note 1] to defined limits
on bandwidth and burstiness (a measure of the unevenness or variations in the trafficflow). It can
also be used as a scheduling algorithm to determine the timing of transmissions that will comply with
the limits set for the bandwidth and burstiness applied by the network: see network
scheduler.[1][2][3][4] A version of the leaky bucket, the Generic Cell Rate Algorithm, is recommended
for Asynchronous Transfer Mode (ATM) networks[5] in Usage/Network Parameter Control at User–
Network Interfaces or Inter-Network Interfaces or Network-Network Interfaces to protect a network
from excessive traffic levels on connections routed through it. The Generic Cell Rate Algorithm, or
an equivalent, may also be used to shape transmissions by a Network Interface Card onto an ATM
network (i.e. on the user side of the User-Network Interface), e.g. to levels below the levels set for
Usage/Network Parameter Control in the network to prevent it taking action to further limit that
connection. The leaky bucket algorithm is also used in leaky bucket counters, e.g. to detect when
the average or peak rate of random or stochastic events or stochastic processes, such as faults or
failures, exceed defined limits.
At least some implementations of the leaky bucket are a mirror image of the Token Bucket algorithm
and will, given equivalent parameters, determine exactly the same sequence of events to conform or
not conform to the same limits. However, there are at least two different descriptions of the leaky
bucket that can and have caused confusion

Code :
using System;
using System.DateTime;

public class TokenBucket

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Analogy
https://en.wikipedia.org/wiki/Bucket
https://en.wikipedia.org/wiki/Leak
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Conformance_testing
https://en.wikipedia.org/wiki/Packet-switching
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Traffic_policing_(communications)
https://en.wikipedia.org/wiki/Traffic_policing_(communications)
https://en.wikipedia.org/wiki/Traffic_shaping
https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Network_packet
https://en.wikipedia.org/wiki/Leaky_bucket#cite_note-packet-1
https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/Burst_transmission
https://en.wikipedia.org/wiki/Network_traffic_measurement
https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Network_scheduler
https://en.wikipedia.org/wiki/Network_scheduler
https://en.wikipedia.org/wiki/Leaky_bucket#cite_note-Turner-2
https://en.wikipedia.org/wiki/Leaky_bucket#cite_note-Tanenbaum-lbaq-3
https://en.wikipedia.org/wiki/Leaky_bucket#cite_note-ATMF-GCRA-4
https://en.wikipedia.org/wiki/Leaky_bucket#cite_note-ITU-T-GCRA-5
https://en.wikipedia.org/wiki/Generic_Cell_Rate_Algorithm
https://en.wikipedia.org/wiki/Asynchronous_Transfer_Mode
https://en.wikipedia.org/wiki/Leaky_bucket#cite_note-UPC_NPC-6
https://en.wikipedia.org/wiki/UPC_and_NPC
https://en.wikipedia.org/wiki/User%E2%80%93network_interface
https://en.wikipedia.org/wiki/User%E2%80%93network_interface
https://en.wikipedia.org/wiki/Network-to-network_interface
https://en.wikipedia.org/wiki/Traffic_policing_(communications)
https://en.wikipedia.org/wiki/Traffic_shaping
https://en.wikipedia.org/wiki/Network_Interface_Card
https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Stochastic_processes
https://en.wikipedia.org/wiki/Token_Bucket

III-I Sem COMPUTER NETWORKS (MR15)

52

{
 float _capacity = 0;
 float _tokens = 0;
 float _fillrate = 0;
 DateTime _time_stamp;

 public TokenBucket(float tokens, float fill_rate)
 {
 _capacity = tokens;
 _tokens = tokens;
 _fill_rate = fill_rate;
 _time_stamp = DateTime.Now;
 }

 public bool Consume(float tokens)
 {
 if(tokens {
 _tokens -= tokens;
 }else{
 return false;
 }
 return true;
 }

 public float GetTokens()
 {
 DateTime _now = DateTime.Now;
 if(_tokens < _capacity)
 {
 var delta = _fill_rate * (_now - _time_stamp);
 _tokens = Math.Min(_capacity, _tokens + delta);
 _time_stamp = _now;
 }
 return _tokens;
 }
}

